Boundary layer transition in high-speed flows due to roughness

نویسندگان

  • Prahladh S. Iyer
  • Suman Muppidi
  • Krishnan Mahesh
چکیده

Direct numerical simulation (DNS) is used to study the effect of individual (hemispherical) and distributed roughness on supersonic flat plate boundary layers. In both cases, roughness generates a shear layer and counter–rotating pairs of unsteady streamwise vortices. The vortices perturb the shear layer, resulting in trains of hairpin vortices and a highly unsteady flow. Mach 3.37 flow past a hemispherical bump is studied by varying the boundary layer thickness (k/δ = 2.54, 1.0, 0.25 & 0.125). Transition occurs in all cases, and the essential mechanism of transition appears to be similar. At smaller boundary layer thickness, multiple trains of hairpin vortices are observed immediately downstream of the roughness, while a single train of hairpin vortices is observed at larger δ. This behavior is explained by the influence of the boundary layer thickness on the separation vortices upstream of the roughness element. Mach 2.9 flow past distributed roughness results in a fully turbulent flow. Mean velocity profiles show spanwise inhomogeneity in the transitional region, with the flow becoming more homogenous downstream. Spanwise spectra initially exhibit only the wavelength of the roughness surface. Then, the energy at smaller wavelengths increases resulting in a broadband spectra downstream. Temporal spectra in the transitional region are characterized by the frequency of the unsteady vortices and a higher frequency corresponding to the shear layer breakdown. The magnitude of wall–pressure fluctuations is observed to be greater in the transitional region than in the turbulent region, where a good agreement with recent experiments is obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model

Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...

متن کامل

Compressibility Effects on Roughness-induced Boundary Layer Transition

Direct numerical simulation is used to investigate the effect of compressibility on roughness-induced boundary layer transition. Computations are performed in both the lowand the high-speed regime (at free-stream Mach number Me = 2) for an isolated three-dimensional element with cubic shape and for two-dimensional roughness strips. For each configuration two values of the roughness height Reyno...

متن کامل

Roughness-induced transition in high speed flows

Roughness elements in a laminar boundary layer can cause the flow to transition. The effects of discrete and distributed roughness are explored using direct numerical simulation on unstructured grids. Velocity profiles for Mach 8.12 flow past a cylindrical roughness element are compared to experiment. Flow features produced by an isolated hemispherical bump are studied for three Mach numbers [3...

متن کامل

A High Order Cut Cell Method for Numerical Simulation of Three Dimensional Hypersonic Boundary-Layer Transition with Finite Surface Roughness

Hypersonic boundary-layer transition can be affected significantly by surface roughness. Many important mechanisms which involve transition induced by arbitrary roughness are not well understood. Direct numerical simulation is broadly applied for investigating the roughness induced instability and transition in recent decade. But due to the complex computational geometry with embedded 3-D rough...

متن کامل

Transition of hypersonic flow past flat plate with roughness elements

Roughness elements in high speed flows can cause laminar-turbulent transition leading to higher heating rates and drag. Transition of flow past a hemispherical bump placed on a flat plate is explored in this paper for three Mach numbers [3.37, 5.26, 8.23] using direct numerical simulation on unstructured grids. The simulation parameters are chosen to match the experiments carried out by Danehy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012